Heathkit HW-7 part 5 – output filter

Looking at the original 1972 manual for the Heathkit HW-7 the specification for spurious and harmonics is only 25 dB down on the transmit carrier. Modern commercially made amateur radio equipment is designed to meet the ITU specification for HF amateur radio equipment which is 43 + 10 log (PEP), or 50 dB, whichever is less stringent.

Testing the transmit output on a spectrum analyzer showed that they were not generous with the specifications the second and third harmonics were only just 25 dB down.

At Cross Country Wireless one of our filter products for the professional market is a bandpass filter that uses a combination of cascaded high pass and low pass filters. In the filter textbooks this is the filter that’s mentioned in the first few paragraphs on bandpass filters but is then rejected as being far too difficult to model mathematically. As long as the high and low pass filters are well spaced in cutoff frequency we can design and manufacture some very effective filters.

The photograph shows a bandpass filter designed for the HW-7 using this technique. The high pass filter cuts off at 6.5 MHz and the high pass filter cuts off at 25 MHz. The PCB board is the one we use in the filters. What is not obvious is that there is a plated through hole at each of the crossing points on the board connected to an identical grid on the other side. When the board is bolted into an enclosure the grid is very effectively RF grounded to the enclosure. BNC connectors were fitted for testing on the network analyzer.

Obviously as it’s not being built for a paying customer I’m using a board that’s been previously used to build a prototype hence all the excess solder on the board. What’s the old saying…a cobbler’s son is always the worst shod!

The bandpass filter does work well. The network analyzer display is covering from 3 to 53 MHz (you can see the 50 MHz marker on the right of the display). The vertical scale is 10 dB per box so at 3.5 MHz the filter is 68 dB down. In the medium wave band the attenuation is even higher. On another transceiver the strongest local AM broadcast station on 1458 kHz cannot even be detected in SSB mode with the filter in.

For the transmit harmonics the bandpass filter cuts off well and it will certainly help the HW-7 meet the modern spurious and harmonic specification. The return loss (VSWR) curve could be better but it would need more time to align it (what did I say earlier about the cobbler’s son?).

It’s all very well quoting specifications and dB levels etc, etc but let’s see if I can give a visual aid to what the filter can do on receive.

Just behind the workshop we have a 15m vertical wire antenna suspended by a tree. This uses a 9:1 current balun to give a rough match to 50 ohms. Here is the antenna fed into a 50 MHz oscilloscope just as the front end preselector circuit in the HW-7 would see it. The oscilloscope is set to 20 mV per box on the vertical scale so the peaks are filling the screen giving 200 mV peak to peak. Yes, that’s 0.2 VOLTS peak to peak!

Putting the bandpass filter in circuit the signal level drops to 10 mV peak to peak. It’s still a high level but any receiver never mind the HW-7 only stands a chance of working once most of the unwanted RF energy from the antenna is filtered out.

One of the reasons I’ve added this filter is that eventually when it’s completed I’d like to take the HW-7 on a SOTA Summits on the Air activation up Winter Hill. Winter Hill has several transmitter masts including the main TV, FM and DAB transmitter mast with megawatts of effective radiated power coming from it.

I often take prototype products up there for testing on the basis that it they work up there they should work anywhere.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s